Definition: Let a, b be non-zero integers. We say
b is divisible by a (or a divides b)
if there is an integer x such that $a \cdot x=b$.
And if this is the case we write $a \mid b$, otherwise we write $a \nmid b$.

Exercise 1.

1. Prove that if $a b \mid a c$, then $b \mid c$, where $a, b, c \in \mathbb{Z}$, and $a \neq 0$.
2. Using the notion of divisibility, give a formal definition of an even and an odd integer.

Theorem 1. For all integers a, b, and c,

1. If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
2. If $a \mid b$, then $a \mid(b c)$.
3. If $a \mid b$ and $b \mid c$, then $a \mid c$.

The Division Theorem (Division Algorithm). Let a and d be integers with $d>0$. There exist unique integers r and q such that $a=q d+r$ and $0 \leq r<d$.

Definition: $a=q d+r$ and $0 \leq r<d$
a is called the dividend.
d is called the divisor.
q is called the quotient.
r is called the remainder.

Ex. Find the quotient and remainder if
(1) $a=27, d=4$
(2) $a=-27, d=4$

Prime Numbers and Composites

Definition: If p is an integer greater than 1 , then p is a prime number if the only divisors of p are 1 and p.

Definition: A positive integer greater than 1 that is not a prime number is called composite.

In other words, a composite number is a positive integer that has at least one positive divisor other than one or itself.

So, if $n>0$ is an integer and $\exists a, b \in \mathbb{Z}, 1<a, b<n$ such that $n=a \times b$, then n is a composite number.

Sieve of Eratosthenes and Interesting Facts about Primes

- There are no efficient algorithms known that will determine the prime factorization of an integer.
- The above is used in many of the current cryptosystems.
- There is no known procedure that will generate prime numbers.
- Twin primes conjecture: There are infinitely many prime pairs, that is, consecutive odd prime numbers, such as 5 and 7 , or 41 and 43 . No one so far has been able to prove or disprove it.
- Goldbach's conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. No one so far has been able to prove or disprove it.

Sieve of Eratosthenes:

Infinity of Primes

Theorem: There are infinitely many prime numbers.

Proof:

The Fundamental Theorem of Arithmetic Fundamental Theorem of Arithmetic: Every positive integer greater than one can be written uniquely as a product of primes, where the prime factors are written in nondecreasing order.

Proof:

Theorem. If n is a composite integer, then n has a factor less than or equal to \sqrt{n}.

In fact, we can similarly prove that
Corollary. If n is a composite integer, then n has at least one prime factor less than or equal to \sqrt{n}.

EX. Show that 113 is a prime.

